
A Parallelizing Compiler Cooperative

Heterogeneous Multicore Processor Architecture

Yasutaka Wada, Akihiro Hayashi, Takeshi Masuura, Jun Shirako,
Hirofumi Nakano, Hiroaki Shikano, Keiji Kimura, and Hironori Kasahara

Department of Computer Science and Engineering, Waseda University
3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
{yasutaka,ahayashi,masuura,shirako,hnakano,

shikano,kimura,kasahara}@kasahara.cs.waseda.ac.jp

Abstract. Heterogeneous multicore architectures, integrating several
kinds of accelerator cores in addition to general purpose processor cores,
have been attracting much attention to realize high performance with low
power consumption. To attain effective high performance, high applica-
tion software productivity, and low power consumption on heterogeneous
multicores, cooperation between an architecture and a parallelizing com-
piler is important. This paper proposes a compiler cooperative hetero-
geneous multicore architecture and parallelizing compilation scheme for
it. Performance of the proposed scheme is evaluated on the heteroge-
neous multicore integrating Hitachi and Renesas’ SH4A processor cores
and Hitachi’s FE-GA accelerator cores, using an MP3 encoder. The het-
erogeneous multicore gives us 14.34 times speedup with two SH4As and
two FE-GAs, and 26.05 times speedup with four SH4As and four FE-
GAs against sequential execution with a single SH4A. The cooperation
between the heterogeneous multicore architecture and the parallelizing
compiler enables to achieve high performance in a short development
period.

1 Introduction

The demands for high performance, low power consumption, cost effectiveness
and short software development period have been increasing in the area of con-
sumer electronics such as mobile phones, games, digital TVs, and car naviga-
tion systems. To satisfy these demands, multicore processors[1–8] have been
attracting much attention. Especially in consumer electronics, heterogeneous
multicores[9–15], that integrate general purpose processor cores and various ac-
celerator cores such as dynamically reconfigurable processors (DRPs), digital sig-
nal processors (DSPs), graphic processors and/or matrix processors (MTXs)[16]
on a chip, have been researched to achieve both high performance with low cost
and low power consumption.

Many types of heterogeneous multicores are being developed such as Larrabee
[9], CELL[10], Stream processor[11], MP211[12], SH4A heterogeneous multicore
[13], and Single-ISA heterogeneous multicore[14]. In addition, development envi-
ronments or language extensions like CUDA[17] come to be used to make it easy

P. Stenström (Ed.): Transactions on HiPEAC IV, LNCS 6760, pp. 215–233, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

216 Y. Wada et al.

to use accelerator cores. However, parallelizing application programs for vari-
ous configurations of heterogeneous multicore processors is human-intensive and
rather difficult. Therefore, a parallelizing compiler, which automatically extracts
parallelism from a sequential program and schedules tasks to heterogeneous cores
considering data transfer overhead, is required to minimize development periods
of application softwares.

A parallelizing compiler for heterogeneous multicore systems has to schedule
tasks to various types of hardware resources. Some task scheduling algorithms
have been proposed for heterogeneous systems with availability constraints
of resources[18, 19]. Though some heuristic scheduling algorithms assume to
be used at compile-time[20, 21], a parallelizing compiler employing such task
scheduling algorithms has not been developed before.

This paper proposes a parallel compilation scheme with a static scheduling
scheme[22] for coarse grain task parallel processing[23] and a heterogeneous mul-
ticore architecture to support the compiler parallelization. The developed com-
piler is based on the OSCAR multigrain parallelizing compiler[24]. In the proposed
compilation scheme, the compiler groups general purpose processor cores on a chip
hierarchically to utilize hierarchical parallelism of a program effectively. In this
processor grouping, accelerator cores are not included in the hierarchical grouping
of general purpose processor cores so that the compiler can improve the availability
of accelerator cores even if the number of them is less than the number of general
purpose processor cores. Then, the compiler applies a static scheduling scheme ex-
tended for a heterogeneous multicore processor and optimizes data transfer tim-
ings considering overlapping with task executions. The proposed heterogeneous
multicore architecture is developed for cooperating with the OSCAR heteroge-
neous compiler. Each accelerator core on this architecture is equipped with sim-
ple processor core to control the accelerator core. This controller makes it possible
that the compiler adjusts the granularity of tasks can be executed on accelerators
to apply the static scheduling. In addition, each core on a chip has the same mem-
ory architecture. This memory homogeneity supports the static scheduling scheme
with memory and data transfer optimization by the compiler.

The remainder of this paper is organized as follows: Overviews of a hetero-
geneous multicore architecture cooperative with the parallelizing compiler are
discussed in Section 2. Overviews of a compilation flow for heterogeneous multi-
core processors are described in Section 3. A coarse grain task parallel processing
method for the heterogeneous multicore architecture is explained in Section 4. A
coarse grain task scheduling scheme on the heterogeneous multicore architecture
considering data transfers is proposed in Section 5. An experimental performance
evaluation using an MP3 encoder program is described in Section 6.

2 A Heterogeneous Multicore with OSCAR-Type
Memory Architecture

The proposed heterogeneous multicore architecture (Fig. 1) is based on homo-
geneous OSCAR-type memory architecture[22, 25, 26]. The architecture has

A Parallelizing Compiler Cooperative Heterogeneous Multicore Processor 217

・DTU : Data Transfer Unit

・FVR : Frequency/Voltage Control Register

・LPM : Local Program Memory

・LDM : Local Data Memory

・DSM : Distributed Shared Memory

・CSM : Centralized Shared Memory

CPU0

CPU DTU

LDMLPM

FVR DSM

Network Interface

Interconnection Network

CPU1 CPUn

DRP0

CPUDTU

LDM LPM

FVRDSM

Network Interface

DRP Core
DRP1 MTX0

CPUDTU

LDM LPM

FVRDSM

Network Interface

Matrix Processor
MTX1

On-Chip
CSM

Memory
Interface

Off-Chip
CSM

Chip

Fig. 1. OSCAR Heterogeneous Multicore Architecture

multiple processor elements (PEs) and centralized shared memories (CSM) con-
nected by an interconnection network like multiple buses or crossbar network.
A general purpose PE has a general purpose processor core (CPU). An acceler-
ator PE has an accelerator core such as a dynamically reconfigurable processor
(DRP) and a matrix processor (MTX) with a small controller processor core.
This controller helps to make synchronizations among PEs, data transfers, and
some simple calculations, so that OSCAR compiler can apply static scheduling
scheme as explained in Section 5 even if the input program has complex control
flow structure. For example, control flow structures such as conditional branches
can be processed by the controller. This paper focuses on the applications that
the compiler can apply the static scheduling scheme in the cooperation with this
architecture.

Each general purpose and accelerator PE has a local data memory (LDM), a
distributed shared memory (DSM), a data transfer unit (DTU) and frequency
voltage control registers (FVR). The Local data memory stores PE private data
in a program. The distributed shared memory is a dual port memory used for
data transfers between PEs and low-latency synchronizations. Different from
cache memory, the local data memory and the distributed shared memory are
managed by software to handle real-time applications. The data transfer unit
is an advanced DMA Controller which enables overlapping task execution and
data transfer. OSCAR compiler controls and optimizes data transfer timings and

218 Y. Wada et al.

data allocation for the PEs using these memories and DTUs with the support
of this homogeneous memory architecture. To make the task cost estimation by
the compiler easy and precise, this architecture expects to use simple CPU cores
as the general purpose cores.

3 A Compilation Flow for Heterogeneous Multicore
Processors

For a heterogeneous multicore, the parallelizing compiler needs to know which
tasks in the program can be executed and accelerated by which accelerator cores
and their execution costs. However, it is difficult to develop a compiler that can
deal with every type of accelerator core. In the proposed scheme, special purpose
compilers for the accelerators developed by their vendors is used to find the tasks
which can be accelerated, to calculate the execution costs, and to generate object
code for the accelerator cores.

Fig. 2 shows a compilation flow for heterogeneous multicore processors. First,
special purpose compilers for accelerator cores are used to generate source code
with directives indicating task execution costs on the accelerator. This source file
is input to OSCAR heterogeneous parallelizing compiler. OSCAR compiler paral-
lelizes and optimizes the program, then generates parallel execution code for the
heterogeneous multicore processor. To generate the execution code, OSCAR com-
piler uses the object codes generated by the special purpose compilers for acceler-
ator cores. This paper focuses on OSCAR parallelizing compiler and the compiler
cooperative heterogeneous multicore architecture assuming that the special pur-
pose compilers are supplied by the vendors and can be used.

4 Coarse Grain Task Parallel Processing on a
Heterogeneous Multicore Processor

This section presents coarse grain task parallel processing on a heterogeneous
multicore processor. In this scheme, OSCAR compiler generates coarse grain
tasks (Macro-Tasks, MTs) hierarchically and decides the hierarchical processor
grouping to utilize parallelism among them.

4.1 Coarse Grain Task Parallel Processing

For coarse grain task parallel processing, the compiler decomposes the target
program into three kinds of coarse grain tasks (Macro-Tasks, MTs), such as a
block of pseudo assignment statements (BPA), a repetition block (RB), a sub-
routine block (SB). After generation of Macro-Tasks from the source program,
the data dependencies and control flow among Macro-Tasks are analyzed, and
Macro-Flow Graphs (MFGs) are generated. A Macro-Flow Graph (Fig. 3a) rep-
resents control flow and data dependencies among Macro-Tasks. Nodes represent
Macro-Tasks, solid edges represent data dependencies among Macro-Tasks, and
dotted edges represent control flow. A small circle inside a node represents a

A Parallelizing Compiler Cooperative Heterogeneous Multicore Processor 219

Input Source File

Special Purpose Compilers for Accelerators

DRP
Compiler

DSP
Compiler

OSCAR Heterogeneous
Parallelizing Compiler

Object Code
For accelerators

Cost Estimation
and

Detection of Tasks
for Accelerators

Object Code Generation

Execution File

Parallelization
and

Optimization

Option/Input File

Processor
Configuration

and
Task Information

Source File
with Directives

Fig. 2. A Compilation Flow for Heterogeneous Multicores

conditional branch inside the Macro-Task. Though arrows of edges are omitted
in the Macro-Flow Graph, it is assumed that the directions are downward.

Then, to extract coarse grain task parallelism among Macro-Tasks from
the Macro-Flow Graph, Earliest Executable Condition Analysis[27] is applied to
the Macro-Flow Graph and a Macro-Task Graph (MTG) is generated (Fig. 3b).
Macro-Task Graphs represent coarse grain task parallelism among Macro-Tasks.
Nodes represent Macro-Tasks. A small circle inside a node represents condi-
tional branches. Solid edges represent data dependencies. Dotted edges represent
extended control dependencies. Extended control dependency means ordinary
normal control dependency and the condition on which a data dependence pre-
decessor of a Macro-Task is not executed. Solid and dotted arcs connecting solid
and dotted edges have two different meanings. A solid arc represents that edges
connected by the arc are in AND relationship. A dotted arc represents that edges
connected by the arc are in OR relationship. Though arrows of edges are omit-
ted assuming downward direction, edges having arrow represents original control
flow edges, or branch direction in Macro-Flow Graph. If SB or RB has nested
inner layer, Macro-Tasks and Macro-Task Graphs are generated hierarchically.

220 Y. Wada et al.

Data Dependency
Extended Control Dependency
Conditional Branch

OR
AND

Original Control Flow

1

2 3

4

5

6

7

8

910 11

12

13

14

Data Dependency

Control Flow

Conditional Branch

1

2 3

4

5

6

7

8

9 10

11

12

13

14

(b) Macro-Task Graph (MTG)(a) Macro-Flow Graph (MFG)

Fig. 3. Examples of Macro-Flow Graph (MFG) and Macro-Task Graph (MTG)

After generation of Macro-Tasks and Macro-Task Graphs, Macro-Tasks are
assigned to Processor-Groups (PGs). A Processor-Group is a group of processor
elements (PEs), and its grouping is performed logically. If the Macro-Task Graph
has only data dependencies,the compiler schedules Macro-Tasks to Processor-
Groups at compile time (static scheduling). The static scheduling scheme can
minimize data transfer, task assignment and synchronization overhead. If the
Macro-Task Graph has conditional branches among Macro-Tasks, the dynamic
scheduling is applied. In this case, the compiler generates scheduling codes to
assign Macro-Tasks to Processor-Groups at run-time[24, 26] though only the
static scheduling scheme is used in this paper.

In addition, if SB or RB has coarse grain task parallelism inside them, PEs are
grouped hierarchically and hierarchical parallelism is utilized. OSCAR compiler
applies the automatic processor grouping scheme[28, 29] to decide the layers to
be applied coarse grain task parallel processing and its processor grouping.

4.2 Hierarchical Processor Grouping Considering OSCAR
Heterogeneous Multicore Architecture

To apply coarse grain task parallel processing with static scheduling effectively,
processor elements (PEs) are grouped into Processor-Groups (PGs) hierarchically

A Parallelizing Compiler Cooperative Heterogeneous Multicore Processor 221

4PEs

PG1_0 PG1_1

PG1_2_0 PG1_2_1 PG1_3_0
DRP0

System

1st Layer

2nd Layer
MTX0

2DRPs 2MTXs

MTG1MT1_1
for CPU

MT1_2
RB

MT1_5
for CPU

MTG1_2
MT1_2_1
for CPU

MT1_2_2
for MTX

MT1_2_3
for DRP

MT1_2_4
for CPU

MT1_2_5
for MTX

MT1_2_6
for DRP

MT1_4
for MTX

MT1_3
for DRP

DRP1 MTX1

Fig. 4. An Example of Processor Grouping considering OSCAR Heterogeneous Multi-
core Architecture

while considering coarse grain task parallelism. General purpose PEs on a hetero-
geneous multicore processor are hierarchically grouped, while considering nested
parallelism of the source program or nested structure of Macro-Task Graphs.
Different from general purpose PEs, accelerator PEs are not grouped hierar-
chically, since the number of accelerator PEs is usually less than the number
of the general purpose PEs and not enough to be assigned to deeply nested
Macro-Task Graphs. In the proposed scheme, accelerator PEs are free from hier-
archical grouping of general purpose PEs, and can be used by any nested layers
of Macro-Task Graphs efficiently. After the processor grouping, OSCAR com-
piler schedules Macro-Tasks (MTs) to Processor-Groups or to accelerator PEs
at compile time.

Fig. 4 shows an example of hierarchical processor grouping for a heterogeneous
multicore processor. In this example, the multicore system has four general pur-
pose PEs and two kinds of accelerator PEs such as two DRP cores and two matrix
processor cores (MTXs)[16]. In the 1st layer Macro-Task Graph (MTG1), gen-
eral purpose PEs are grouped into two Processor-Groups (PG1 0 and PG1 1)
and Macro-Tasks (MTs) in this layer is assigned to these Processor-Groups.
While the MT1 2 having coarse grain task parallelism internally is executed on
PG1 0, PG1 0 is grouped into two Processor-Groups (PG1 2 0 and PG1 2 1)
hierarchically. DRPs and MTXs are grouped according to their types or func-
tionality, and can accept requests to execute Macro-Tasks from any Macro-Task
Graph.

222 Y. Wada et al.

5 A Static Scheduling Algorithm for OSCAR
Heterogeneous Multicore Architecture

This section presents a static scheduling scheme for coarse grain tasks on OS-
CAR heterogeneous multicore architecture. In this scheme, the compiler sched-
ules Macro-Tasks to Processor-Groups composed of general purpose PEs and
accelerator PEs to minimize execution time while considering load balancing
and data transfer timing.

5.1 A Task Scheduling Scheme for Heterogeneous Multicores

To schedule Macro-Tasks in the input program to heterogeneous cores, the char-
acteristics of Macro-Tasks and PEs must be considered. For example, some
Macro-Tasks are assignable to accelerator PEs (PEs having accelerator cores),
however, the other Macro-Tasks cannot be executed on accelerator PEs. In most
cases, the assignable Macro-Tasks result in highly effective execution if they are
assigned to accelerators. Different from accelerator PEs, general purpose PEs
(PEs having only general purpose processor cores) can execute all Macro-Tasks.

The task scheduling algorithm for heterogeneous multicore implemented in
OSCAR compiler consists of eight steps:

Step 1. Preparation.
Step 1-1. Calculate each Macro-Task cost on a general purpose PE and

each assignable accelerator PE.
Step 1-2. Calculate scheduling priority of each Macro-Task (see Section 5.2

for more details).
Step 2. Initialization.

Step 2-1. Set the scheduling time to zero.
Step 2-2. Add the 1st layer Macro-Task Graph to the list of Macro-Task

Graphs under the scheduling process.
Step 3. Extracting ready tasks.

Extract ready Macro-Tasks from the Macro-Task Graphs in the list of Macro-
Task Graphs under the scheduling process. Ready Macro-Tasks are Macro-
Tasks that satisfy the following requirements at current scheduling time :
– satisfying Earliest Executable Condition[27]
– having a Processor-Group or an assignable accelerator PE which is free

at current scheduling time
If there is no ready Macro-Task, then go to Step 8.

Step 4. Task selection.
Select a Macro-Task to be scheduled (target Macro-Task) from the ready
Macro-Tasks according to the priorities.

Step 5. Completion time estimation.
Estimate execution completion time of the target Macro-Task on
– each Processor-Group which is free at current scheduling time
– each accelerator PE which can execute the target Macro-Task

A Parallelizing Compiler Cooperative Heterogeneous Multicore Processor 223

EMT
Cost:0

MT3
Cost:80

MT4
Cost:70

MT2
Cost:30

MT1
Cost:40

MT5
Cost:50

MT3-3
Cost:30

MT3-2
Cost:50

MT3-4
Cost:10

MT3-1
Cost:20

EMT
Cost:0

GCP=70

GCP=50
GCP=80

GCP=110GCP=130

GCP=150

GCP=150GCP=100

GCP=190 MT3
MTG3

Fig. 5. Global CP Length

(To estimate the completion time, data transfer timings are calculated as
mentioned in Section 5.3 and 5.4.)

Step 6. Macro-Task assignment.
Assign the target Macro-Task to the Processor-Group or the accelerator PE
gives the earliest completion time.

Step 7. Examination of inside of the Macro-Task.
If the assigned Macro-Task has Macro-Task Graphs to be applied coarse
grain parallel processing inside, add it to the list of Macro-Task Graphs in
the scheduling process.

Step 8. Updating the scheduling time.
Step 8-1. Update the scheduling time until the time when a Macro-Task is

completed next.
Step 8-2. If there is a Macro-Task Graph that all of the Macro-Tasks inside

have been completed at the updated scheduling time, remove it from the
list of Macro-Task Graphs under the scheduling process.

Step 8-3. If all of the Macro-Tasks are completed, then exit. If not, then
go to Step 3.

5.2 A Scheduling Priority

In this paper, global critical path length (global CP length, GCP) is used as the
scheduling priority. Global CP length is the longest path length from the exit
node of main program to each Macro-Task calculated considering hierarchical
Macro-Task Graph structure. Fig. 5 is an example of hierarchical Macro-Task
Graphs and global critical path length (GCP) of each Macro-Task (MT). For
example, the longest path length from the exit node (EMT) of MTG3 to MT3-3
is 40, and the longest path length from the exit node of the main program to
the end of MT3 is 70. Therefore, the longest path length, or global critical path
length of MT3-3 is 110, or 40 + 70.

224 Y. Wada et al.

5.3 Estimating Completion Time of a Macro-Task

In the proposed task scheduling scheme, OSCAR compiler estimates completion
time of a Macro-Task considering characteristics of the Macro-Task (MT) and
processor elements (PEs), and overlapping data transfers with task executions.
OSCAR compiler estimates a Macro-Task cost by adding up the costs of instruc-
tions inside the task. In the case of loops, the number of iterations is estimated
using initial and final value of the loop index, or the size of array accessed in the
task. If more precise costs are required, profiling results may be used. In both
cases, OSCAR compiler can schedule Macro-Tasks effectively if relative costs
among Macro-Tasks are correct.

Before estimating the completion time of a Macro-Task, the completion time
of data transfers needed by the target Macro-Task DTend is estimated as:

DTend = max[DTload, max
MTp∈PRED

{DTsend(p)}],

where PRED is the set of predecessors of the target Macro-Task, DTsend(p)
is the completion time of data transfers from a predecessor MTp, and DTload

is the completion time of data loadings from CSM. These data transfers are
scheduled while considering overlapping with task executions (section 5.4). Then,
completion time of the target Macro-Task (MTfin) is estimated as:

MTfin = max(Tfree, DTend) + COSTMT + DTstore,

where Tfree is the time that the Processor-Group or the accelerator PE comes
to be free, DTend is the completion time of the data transfers, COSTMT is
the execution cost of the target Macro-Task on the Processor-Group or the
accelerator PE, and DTstore is the cost of the data storing to CSM. If the target
Macro-Task has Macro-Task Graphs inside it, its completion time is estimated
by applying this scheduling scheme to the Macro-Task Graphs inside recursively.

5.4 Overlapping Data Transfers and Task Executions

On a heterogeneous multicore architecture proposed in Section 2, data can be
transferred by the data transfer unit (DTU)[13] effectively. In current imple-
mentation, the data transfer unit is driven at the beginning or the end of a
Macro-Task execution. Once a data transfer is driven, the data transfer is per-
formed asynchronously with task executions on CPU cores or accelerator cores.
OSCAR compiler searches data transfer timing while considering the statuses
of interconnection network and memory ports. Data loadings from centralized
shared memory and data sending among processor elements are scheduled as
earlier as possible while considering overlapping with task executions, and data
storings to centralized shared memory are scheduled to be overlapped with task
executions if possible.

Fig. 6 shows an example of the scheduling result with data transfers. This
figure shows the case that one general purpose PE (CPU0) and one accelerator

A Parallelizing Compiler Cooperative Heterogeneous Multicore Processor 225

MT1

MT6

MT4MT2

MT5 MT7

MT8

CPU0
CORE DTU

DRP0
CORE DTU

LOAD to MT 1

MT1

BUS

MT
for CPU

MT
for DRP

STORE for MT7

MT4

MT6

MT3 MT3

LOAD to MT 3

STORE for MT1

GET MT1→MT3

MT2

LOAD to MT 2

STORE for MT3

STORE for MT2

LOAD to MT 4

GET MT1→MT4

STORE for MT4

MT5

LOAD to MT 5

STORE for MT5

LOAD to MT 6

SEND MT2→MT6

STORE for MT6

MT7

SEND MT3→MT7

LOAD to MT 7

SEND MT4→MT7

MT8

LOAD to MT 8

SEND MT6→MT8

STORE for MT8

TI
M

E

Fig. 6. An Example of Task Scheduling Result considering Overlapping Data Transfers
and Task Executions

PE with DRP (DRP0) are connected with single bus. In this example, “LOAD”
means data loading from centralized shared memory (CSM), “STORE” means
data storing to CSM, “SEND” means data storing/sending to remote distributed
shared memory (DSM) and “GET” means data loading/getting from remote
DSM. For example, data loading from CSM to the PE that executes Macro-
Task named MT4 (“LOAD to MT4”) is overlapped with the execution of MT3.

6 Performance Evaluation

This section evaluates the performance of the proposed heterogeneous multicore
architecture and task scheduling algorithm.

6.1 The Evaluated Multicore Architecture

In this evaluation, the heterogeneous multicore processor having up to eight PEs
on a chip is used. SH4A[30] processor cores are used as the general purpose pro-
cessor cores and controllers of accelerator PEs, and FE-GAs[13, 31] are used as
DRP cores of accelerator PEs. Triple buses are used as the interconnection net-
work, and centralized shared memory has four memory banks. Table 1 shows the
minimum access costs of distributed shared memory (DSM), local data mem-
ory(LDM), and centralized shared memory (CSM). Local DSM access needs 1

226 Y. Wada et al.

Table 1. Minimum Access Costs for LDM, DSM, and CSM

DSM 1 Clock Cycle

DSM (Remote) 4 Clock Cycles

LDM 1 Clock Cycle

CSM 16 Clock Cycles (off-chip)
4 Clock Cycles (on-chip)

Table 2. MP3 Encode Parameters

of frames evaluated 16 frames of Stereo PCM

Sample Rate 44.1 [kHz]

Bit Rate 128 [kbps]

clock cycle, remote DSM access needs 4 clock cycles, LDM access needs 1 clock
cycle, on-chip CSM access needs 4 clock cycles and off-chip CSM access needs
16 clock cycles at 300MHz. A clock accurate simulator of the heterogeneous
multicore architecture is used for this evaluation.

6.2 The Evaluated Application

In this evaluation, an MP3 encoder program written in FORTRAN77 is used.
This program is implemented based on the “UZURA MPEG1/LayerIII encoder
in FORTRAN90”[32]. Tasks can be executed by accelerator PEs are specified
by compiler directives. OSCAR compiler[24] extracts parallelism from the se-
quential program and schedules its coarse grain tasks to the general purpose
processor PEs, namely SH4A cores, and accelerator PEs with FE-GA cores. The
encode parameters are shown in Table 2. The input PCM data is allocated on
the centralized shared memory initially. Profiling results are used for the task
scheduling. Only the main encoding loop is measured to reduce the influence of
I/O and calculation of the initial values.

The Structure and Parallelism of an MP3 Encoder. Fig. 7a shows the
program structure of MP3 encoder. The MP3 encoder program consists of Sub-
Band Analysis, MDCT, Psycho-Acoustic Analysis, Quantization, and Huffman
Coding. In the MDCT, the result from the sub-band analysis of the previous
frame is used. In psycho-acoustic analysis, the result from the psycho-acoustic
analysis of the previous frame is used. Except these stages that need to deliver
data among frames, multiple frames can be encoded at the same time. In the
program used for this evaluation, 16 frames of PCM data are encoded in the same
iteration of main-loop of encoding (Fig. 7b). In this evaluation, it is assumed that
local memory (local data memory and distributed shared memory) size is large
enough to store the data to encode the 16 frames.

A Parallelizing Compiler Cooperative Heterogeneous Multicore Processor 227

S S S S

P

PPP

MM M M

Q&HQ&H Q&H Q&H

B BBB

Output

Input

MM M M

Q&HQ&H Q&H Q&H

B BBB

S S S S

P

PPP

16Frames

Sub-Band
Analysis (S)

Psycho-
Acoustic

Analysis (P)
MDCT (M)

Quantization
(Q)

Huffman
Coding (H)

Input

Output

Bitstream
Generation (B)

Prev. (P)

Prev. (S)

Next (P)

Next (M)

(a) (b)

Fig. 7. The Program Structure and the Task Graph of the Evaluated MP3 Encoder

Code Mapping for the ALU Array of FE-GA. In this evaluation, “P”,
“M”, “Q&H” and a part of “S” (Fig. 7b) can be executed and accelerated by
accelerator PEs having FE-GAs. Their execution costs on accelerator PEs are
precisely estimated in clock level using the amount of input data and the code
mapping for the ALU array on FE-GA.

FE-GA core has 24 ALU cells and 8 MULT cells, and these cells are connected
to the memory via a crossbar switch. Fig. 8 shows a part of code mapping of
MP3 sub-band analysis to FE-GA. The k’s loop can be accelerated with the
FE-GA’s ALU array (Fig. 8a). In the code mapping of this part (Fig. 8b), the
k’s loop is divided into two parts for the effective use of ALU/MULT cells.

Estimated speedup on accelerator PEs is shown in Fig. 9. The estimated
speedup is the average of the sixteen frames used in this evaluation. A part of sub-
band analysis and psycho-acoustic analysis are comparatively simple processions,
which give us 67.06 times speedup and 61.76 times speedup against a single
general purpose PE, respectively. Because the task of Quantization and Huffman
Coding (“Q&H” in Fig. 7b) is complex, it gives us 4.36 times speedup. On the
average, 6.73 times speedup is given by an accelerator PE with FE-GA core
against a general purpose PE.

6.3 Performance on OSCAR Heterogeneous Multicore
by OSCAR Compiler

The parallel processing performance of an MP3 encoder on the OSCAR hetero-
geneous multicore by OSCAR heterogeneous parallelizing compiler is shown in
Fig. 10. The horizontal axis shows the configurations of the processor cores and
centralized shared memory (namely, on-chip CSM or off-chip CSM). The verti-
cal axis shows the speedup against the sequential execution using one general

228 Y. Wada et al.

kp4

kp3

託哲

(a) A Part of
 MP3 Sub-band Analysis (b) The Code Mapping for a FE-GA Core

Fig. 8. A Sample Code to be Accelerated by FE-GA and its Mapping for ALU Array
of FE-GA

67.06
61.76

44.40

4.36 6.73

0
10
20
30
40
50
60
70
80

Sp
ee

du
p

by
 D

R
P

(v
.s

. S
H

4A
)

Fig. 9. Speedup of the MP3 Encoder by an Accelerator PE (DRP)

A Parallelizing Compiler Cooperative Heterogeneous Multicore Processor 229

1.00
2.00

4.00

7.997.67
9.19

10.92
14.34

17.56

24.72
26.05

1.00
2.00

4.00

8.007.66
9.19

10.92
14.34

17.56

24.76
26.01

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1C
P

U
2C

P
U

4C
P

U
8C

P
U

1C
P

U
+1

D
R

P
2C

P
U

+1
D

R
P

1C
P

U
+2

D
R

P
2C

P
U

+2
D

R
P

4C
P

U
+2

D
R

P
2C

P
U

+4
D

R
P

4C
P

U
+4

D
R

P
1C

P
U

2C
P

U
4C

P
U

8C
P

U
1C

P
U

+1
D

R
P

2C
P

U
+1

D
R

P
1C

P
U

+2
D

R
P

2C
P

U
+2

D
R

P
4C

P
U

+2
D

R
P

2C
P

U
+4

D
R

P
4C

P
U

+4
D

R
P

On-Chip CSM Off-Chip CSM

Sp
ee

du
p

(v
.s

. 1
C

PU
, O

n-
C

hi
p

C
SM

)

Processor Configurations

Fig. 10. The Performance of the MP3 Encoder on the OSCAR Heterogeneous Multi-
core using OSCAR Compiler

purpose PE and on-chip CSM. “nCPU+mDRP” are the numbers of general
purpose PEs (CPUs in the figure) and accelerator PEs with FE-GAs (DRPs).
“On-Chip” means on-chip CSM and “Off-Chip” means off-chip CSM.

The configurations of 2CPU, 4CPU and 8CPU with on-chip CSM give us
2.00, 4.00 and 7.99 times speedup against 1CPU, respectively. The proposed
heterogeneous parallelizing compilation scheme with architecture supports is ef-
fective even on a homogeneous multicore environment. With heterogeneous con-
figurations, the configurations of 1CPU+1DRP, 2CPU+1DRP, 1CPU+2DRP,
2CPU+2DRP, 4CPU+2DRP, 2CPU+4DRP and 4CPU+4DRP give 7.67, 9.19,
10.92, 14.34, 17.56, 24.72 and 26.05 times speedup against 1CPU, respectively.
Effective use of accelerator PEs gives a much higher performance compared with
the number of PEs.

Even if the CSM is out of the chip, the homogeneous configurations of 2CPU,
4CPU and 8CPU give us 2.00, 4.00, 8.00 times speedup against 1CPU, respec-
tively, and the heterogeneous configurations of 1CPU+1DRP, 2CPU+1DRP,
1CPU+2DRP, 2CPU+2DRP, 4CPU+2DRP, 2CPU+4DRP and 4CPU+4DRP
give us 7.66, 9.19, 10.92, 14.34, 17.56, 24.76 and 26.01 times speedup. This is
because the data are effectively assigned to local memories (local data memories
and distributed shared memories) and data transfers are overlapped with task
execution with the use of data transfer units (DTUs), or DMA controllers.

230 Y. Wada et al.

CPU0 M
T8

3
M

T8
6

M
T8

9

M
T9

0
M

T1
07

M
T1

08
M

T1
14

M
T8

7
M

T1
15

M
T1

02
M

T8
4

M
T1

23
M

T1
01

M
T1

33
M

T1
22

M
T1

03

M
T9

3
M

T7
7

M
T1

18

M
T9

9
M

T1
12

M
T1

24
M

T9
2

M
T1

40
M

T9
4

M
T1

19

M
T1

34
M

T1
21

M
T1

27

M
T1

45
M

T9
6

M
T9

5
M

T1
30

M
T9

7 MT152

M
T1

63
M

T1
78

M
T1

66
M

T1
74

M
T1

71
M

T1
67

M
T1

76
M

T1
70

CPU1 M
T5

1
M

T5
3

M
T5

5
M

T5
7

M
T5

9
M

T6
1

M
T1

13

M
T1

05
M

T1
09

M
T1

04
M

T9
1

M
T1

17
M

T1
11

M
T1

06
M

T7
5

M
T1

16
M

T8
8

M
T1

10

M
T1

38
M

T1
32

M
T9

8

M
T1

20
M

T1
26

M
T1

00
M

T1
25

M
T7

9

M
T1

36
M

T1
43

M
T1

29
M

T1
28

M
T8

1

M
T1

46 MT159

M
T1

64
M

T1
65

M
T1

72
M

T1
68

M
T1

77
M

T1
69

M
T1

75
M

T1
73

DRP0 M
T3

5
M

T3
7

M
T3

9
M

T4
1

M
T4

3
M

T4
5

M
T4

8
M

T4
9 MT155 MT149 MT148 MT147 MT160

M
T1

62 MT151

DRP1 M
T3

6
M

T3
8

M
T4

0
M

T4
2

M
T4

4
M

T4
6

M
T4

7
M

T5
0 MT157 MT156 MT154 MT153 MT158 MT150

M
T1

61

TIME

Fig. 11. The Execution Trace of the Configuration of 2CPU+2DRP with off-chip CSM

Fig. 11 shows the execution trace of 2CPU+2DRP with off-chip CSM. MT152
and MT159 are the Macro-Tasks of Quantization and Huffman Coding (“Q&H”
in Fig 7b) and executed by the general purpose PEs, though they can be assigned
to accelerator PEs. If they are assigned to accelerator PEs, the total processing
time of the program becomes larger than the schedule. In the proposed compi-
lation scheme, a Macro-Task, which might require more processing time if it is
assigned to an accelerator PE, is automatically assigned to a general purpose
PE to utilize CPUs and accelerators effectively.

7 Conclusions

This paper has proposed OSCAR heterogeneous multicore architecture and an
automatic parallelizing compilation scheme using static coarse grain task schedul-
ing. The performance is evaluated on the heterogeneous multicore processor
with low power SH4A processor cores as general purpose PEs (CPUs), and FE-
GA dynamically reconfigurable processor (DRP) cores as accelerator PEs using
an MP3 encoder implemented based on “UZURA MPEG1/LayerIII encoder in
FORTRAN90”. In this evaluation, the heterogeneous configurations give us 14.34
times speedup with two CPUs and two DRPs and 26.05 times speedup with four
CPUs and four DRPs against sequential execution on one CPU with the on-chip
centralized shared memory (CSM). Also, with the off-chip CSM, the heteroge-
neous multicore give us 14.34 times speedup with two CPUs and two DRPs and
26.01 times speedup with four CPUs and four DRPs by data localization to local
data memories and distributed shared memories and data transfer overlapping
using intelligent DMA controllers.

References

1. Hammond, L., Hubbert, B.A., Siu, M., Prabhu, M.K., Chen, M., Olukotun, K.:
The stanford hydra CMP. IEEE Micro 20, 71–84 (2000)

2. ARM Limited: ARM11 MPCore Processor Technical Reference Manual (2005)

A Parallelizing Compiler Cooperative Heterogeneous Multicore Processor 231

3. Friedrich, J., McCredie, B., James, N., Huott, B., Curran, B., Fluhr, E., Mittal,
G., Chan, E., Chan, Y., Plass, D., Chu, S., Le, H., Clark, L., Ripley, J., Taylor,
S., Dilullo, J., Lanzerotti, M.: Design of the Power6 microprocessor. In: Digest of
Technical Papers of the 2007 IEEE International Solid-State Circuits Conference,
pp. 96–97 (February 2007)

4. Taylor, M.B., Kim, J., Miller, J., Wentzlaff, D., Ghodrat, F., Greenwald, B.,
Hoffman, H., Johnson, P., Lee, J.W., Lee, W., Ma, A., Saraf, A., Seneski, M.,
Shnidman, N., Strumpen, V., Frank, M., Amarasinghe, S., Agarwal, A.: The raw
microprocessor: A computational fabric for software circuits and general purpose
programs. IEEE Micro 22, 25–35 (2002)

5. Sankaralingam, K., Nagarajan, R., Liu, H., Kim, C., Huh, J., Burger, D.,
Keckler, S.W., Moore, C.R.: Exploiting ILP, TLP, and DLP with the polymorphous
TRIPS architecture. In: Proceedings of the 30th Annual International Symposium
on Computer Architecture, pp. 422–433 (June 2003)

6. Shiota, T., Kawasaki, K., Kawabe, Y., Shibamoto, W., Sato, A., Hashimoto, T.,
Hayakawa, F., Tago, S., Okano, H., Nakamura, Y., Miyake, H., Suga, A., Takahashi,
H.: A 51.2GOPS 1.0GB/s-DMA single-chip multi-processor integrating quadruple
8-Way VLIW processors. In: Digest of Technical Papers of the 2005 IEEE Inter-
national Solid-State Circuits Conference, pp. 194–593 (February 2005)

7. Sohi, G.S., Breach, S.E., Vijaykumar, T.N.: Multiscalar processors. In: Proceedings
of 22nd Annual International Symposium on Computer Architecture, pp. 414–425
(June 1995)

8. Vangal, S., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz, J., Finan, D.,
Iyer, P., Singh, A., Jacob, T., Jain, S., Venkataraman, S., Hoskote, Y., Borkar, N.:
An 80-Tile 1.28TFLOPS network-on-chip in 65nm CMOS. In: Digest of Technical
Papers of the 2007 IEEE International Solid-State Circuits Conference, pp. 98–589
(February 2007)

9. Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junk-
ins, S., Lake, A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T.,
Hanrahan, P.: Larrabee: A many-core x86 architecture for visual computing. ACM
Transactions on Graphics 27(3) (2008)

10. Pham, D., Asano, S., Bolliger, M., Day, M.N., Hofstee, H.P., Johns, C., Kahle,
J., Kameyama, A., Keaty, J., Masubuchi, Y., Riley, M., Shippy, D., Stasiak, D.,
Suzuoki, M., Wang, M., Warnock, J., Weitzel, S., Wendel, D., Yamazaki, T.,
Yazawa, K.: The design and implementation of a first-generation CELL proces-
sor. In: Digest of Technical Papers of the 2005 IEEE International Solid-State
Circuits Conference, pp. 184–592 (February 2005)

11. Khailany, B., Williams, T., Lin, J., Long, E., Rygh, M., Tovey, D., Dally, W.J.: A
programmable 512 GOPS stream processor for signal, image, and video processing.
In: Digest of Technical Papers of the 2007 IEEE International Solid-State Circuits
Conference, pp. 272–602 (February 2007)

12. Torii, S., Suzuki, S., Tomonaga, H., Tokue, T., Sakai, J., Suzuki, N., Murakami,
K., Hiraga, T., Shigemoto, K., Tatebe, Y., Ohbuchi, E., Kayama, N., Edahiro, M.,
Kusano, T., Nishi, N.: A 600MIPS 120mW 70µA leakage triple-CPU mobile appli-
cation processor chip. In: Digest of Technical Papers of the 2005 IEEE International
Solid-State Circuits Conference, pp. 136–589 (February 2005)

232 Y. Wada et al.

13. Ito, M., Todaka, T., Tsunoda, T., Tanaka, H., Kodama, T., Shikano, H., Onouchi,
M., Uchiyama, K., Odaka, T., Kamei, T., Nagahama, E., Kusaoke, M., Nitta,
Y., Wada, Y., Kimura, K., Kasahara, H.: Heterogeneous multiprocessor on a chip
which enables 54x AAC-LC stereo encoding. In: Proceedings of the 2007 IEEE
Symposium on VLSI Circuits, pp. 18–19 (June 2007)

14. Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi, N.P., Farkas, K.I.: Single-ISA
heterogeneous multi-core architectures for multithreaded workload performance.
In: Proceedings of the 31st Annual International Symposium on Computer Archi-
tecture, pp. 64–75 (June 2004)

15. Shikano, H., Suzuki, Y., Wada, Y., Shirako, J., Kimura, K., Kasahara, H.: Perfor-
mance evaluation of heterogeneous chip multi-processor with MP3 audio encoder.
In: Proceedings of the IEEE Symposium on Low-Power and High Speed Chips, pp.
349–363 (April 2006)

16. Noda, H., Tanizaki, T., Gyohten, T., Dosaka, K., Nakajima, M., Mizumoto, K.,
Yoshida, K., Iwao, T., Nishijima, T., Okuno, Y., Arimoto, K.: The circuits and
robust design methodology of the massively parallel processor based on the ma-
trix architecture. In: Digest of Technical Papers of the 2006 Symposium on VLSI
Circuits, pp. 210–211 (2006)

17. NVIDIA Corporation: NVIDIA CUDA Compute Unified Device Architecture Pro-
gramming Guide (2008)

18. Xie, T., Qin, X.: Stochastic scheduling with availability constraints in hetero-
geneous clusters. In: Proceedings of the 2006 IEEE International Conference on
Cluster Computing, pp. 1–10 (September 2006)

19. Sih, G.C., Lee, E.A.: A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures. IEEE Transactions on Parallel
and Distributed Systems 4, 175–187 (1993)

20. Chan, W.Y., Li, C.K.: Scheduling tasks in DAG to heterogeneous processor sys-
tem. In: Proceedings of the 6th Euromicro Workshop on Parallel and Distributed
Processing, pp. 27–31 (January 1998)

21. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems 13, 260–274 (2002)

22. Kasahara, H., Honda, H., Narita, S.: Parallel processing of near fine grain tasks
using static scheduling on OSCAR (Optimally SCheduled Advanced multiproces-
soR). In: Proceedings of Supercomputing ’90, pp. 856–864 (November 1990)

23. Kimura, K., Kodaka, T., Obata, M., Kasahara, H.: Multigrain parallel processing
on OSCAR CMP. In: Proceedings of the 2003 International Workshop on Innova-
tive Architecture for Future Generation High-Performance Processors and Systems
(January 2003)

24. Ishizaka, K., Miyamoto, T., Shirako, J., Obata, M., Kimura, K., Kasahara, H.: Per-
formance of OSCAR multigrain parallelizing compiler on SMP servers. In: Proceed-
ings of the 17th International Workshop on Languages and Compilers for Parallel
Computing (September 2004)

25. Kimura, K., Wada, Y., Nakano, H., Kodaka, T., Shirako, J., Ishizaka, K., Kasahara,
H.: Multigrain parallel processing on compiler cooperative chip multiprocessor. In:
Proceedings of the 9th Annual Workshop on Interaction between Compilers and
Computer Architectures, pp. 11–20 (February 2005)

26. Kasahara, H., Ogata, W., Kimura, K., Matsui, G., Matsuzaki, H., Okamoto, M.,
Yoshida, A., Honda, H.: OSCAR multi-grain architecture and its evaluation. In: Pro-
ceedings of the 1997 International Workshop on Innovative Architecture for Future
Generation High-Performance Processors and Systems, pp. 106–115 (October 1997)

A Parallelizing Compiler Cooperative Heterogeneous Multicore Processor 233

27. Kasahara, H., Honda, H., Mogi, A., Ogura, A., Fujiwara, K., Narita, S.: A multi-
grain parallelizing compilation scheme for OSCAR (Optimally scheduled advanced
multiprocessor). In: Proceedings of the Fourth International Workshop on Lan-
guages and Compilers for Parallel Computing, pp. 283–297 (August 1991)

28. Obata, M., Shirako, J., Kaminaga, H., Ishizaka, K., Kasahara, H.: Hierarchical
parallelism control for multigrain parallel processing. In: Pugh, B., Tseng, C.-W.
(eds.) LCPC 2002. LNCS, vol. 2481, pp. 31–44. Springer, Heidelberg (2005)

29. Shirako, J., Nagasawa, K., Ishizaka, K., Obata, M., Kasahara, H.: Selective inline
expansion for improvement of multi grain parallelism. In: The IASTED Inter-
national Conference on Parallel and Distributed Computing and Networks, pp.
128–134 (February 2004)

30. Yoshida, Y., Kamei, T., Hayase, K., Shibahara, S., Nishii, O., Hattori, T.,
Hasegawa, A., Takada, M., Irie, N., Uchiyama, K., Odaka, T., Takada, K., Kimura,
K., Kasahara, H.: A 4320MIPS four-processor core SMP/AMP with individually
managed clock frequency for low power consumption. In: Digest of Technical Pa-
pers of the 2007 IEEE International Solid-State Circuits Conference, pp. 100–590
(February 2007)

31. Kodama, T., Tsunoda, T., Takada, M., Tanaka, H., Akita, Y., Sato, M., Ito, M.:
Flexible engine: A dynamic reconfigurable accelerator with high performance and
low power consumption. In: Proceedings of the IEEE Symposium on Low-Power
and High Speed Chips, pp. 393–408 (April 2006)

32. UZURA3: MPEG1/LayerIII encoder in FORTRAN90,
http://members.at.infoseek.co.jp/kitaurawa/index_e.html

http://members.at.infoseek.co.jp/kitaurawa/index_e.html

	A Parallelizing Compiler Cooperative Heterogeneous Multicore Processor Architecture
	Introduction
	A Heterogeneous Multicore with OSCAR-Type Memory Architecture
	A Compilation Flow for Heterogeneous Multicore Processors
	Coarse Grain Task Parallel Processing on a Heterogeneous Multicore Processor
	Coarse Grain Task Parallel Processing
	Hierarchical Processor Grouping Considering OSCAR Heterogeneous Multicore Architecture

	A Static Scheduling Algorithm for OSCAR Heterogeneous Multicore Architecture
	A Task Scheduling Scheme for Heterogeneous Multicores
	A Scheduling Priority
	Estimating Completion Time of a Macro-Task
	Overlapping Data Transfers and Task Executions

	Performance Evaluation
	The Evaluated Multicore Architecture
	The Evaluated Application
	Performance on OSCAR Heterogeneous Multicore by OSCAR Compiler

	Conclusions
	References

